Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 80(1): 102-115, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672844

RESUMO

The sodium iodide symporter (NIS) is required for iodide uptake, which facilitates thyroid hormone biosynthesis. NIS has been exploited for over 75 years in ablative radioiodine (RAI) treatment of thyroid cancer, where its ability to transport radioisotopes depends on its localization to the plasma membrane. The advent of NIS-based in vivo imaging and theranostic strategies in other malignancies and disease modalities has recently increased the clinical importance of NIS. However, NIS trafficking remains ill-defined. Here, we used tandem mass spectrometry followed by coimmunoprecipitation and proximity ligation assays to identify and validate two key nodes-ADP-ribosylation factor 4 (ARF4) and valosin-containing protein (VCP)-controlling NIS trafficking. Using cell-surface biotinylation assays and highly inclined and laminated optical sheet microscopy, we demonstrated that ARF4 enhanced NIS vesicular trafficking from the Golgi to the plasma membrane, whereas VCP-a principal component of endoplasmic reticulum (ER)-associated degradation-governed NIS proteolysis. Gene expression analysis indicated VCP expression was particularly induced in aggressive thyroid cancers and in patients who had poorer outcomes following RAI treatment. Two repurposed FDA-approved VCP inhibitors abrogated VCP-mediated repression of NIS function, resulting in significantly increased NIS at the cell-surface and markedly increased RAI uptake in mouse and human thyroid models. Collectively, these discoveries delineate NIS trafficking and highlight the new possibility of systemically enhancing RAI therapy in patients using FDA-approved drugs. SIGNIFICANCE: These findings show that ARF4 and VCP are involved in NIS trafficking to the plasma membrane and highlight the possible therapeutic role of VCP inhibitors in enhancing radioiodine effectiveness in radioiodine-refractory thyroid cancer.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Complexo de Golgi/metabolismo , Radioisótopos do Iodo/farmacologia , Simportadores/metabolismo , Câncer Papilífero da Tireoide/terapia , Neoplasias da Glândula Tireoide/terapia , Proteína com Valosina/metabolismo , Adulto , Animais , Mama/patologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Quimiorradioterapia/métodos , Feminino , Perfilação da Expressão Gênica , Humanos , Radioisótopos do Iodo/uso terapêutico , Estimativa de Kaplan-Meier , Masculino , Camundongos , Pessoa de Meia-Idade , Cultura Primária de Células , Prognóstico , Intervalo Livre de Progressão , Proteólise , Câncer Papilífero da Tireoide/mortalidade , Câncer Papilífero da Tireoide/patologia , Glândula Tireoide/citologia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/patologia , Glândula Tireoide/efeitos da radiação , Neoplasias da Glândula Tireoide/mortalidade , Neoplasias da Glândula Tireoide/patologia , Distribuição Tecidual , Proteína com Valosina/antagonistas & inibidores
2.
Cancer Res ; 78(20): 5863-5876, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30154144

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer worldwide and poses a significant health burden due to its rising incidence. Although the proto-oncogene pituitary tumor-transforming gene 1 (PTTG) predicts poor patient outcome, its mechanisms of action are incompletely understood. We show here that the protein PBF modulates PTTG function, is overexpressed in HNSCC tumors, and correlates with significantly reduced survival. Lentiviral shRNA attenuation of PTTG or PBF expression in HNSCC cells with either wild-type or mutant p53, and with and without HPV infection, led to dysregulated expression of p53 target genes involved in DNA repair and apoptosis. Mechanistically, PTTG and PBF affected each other's interaction with p53 and cooperated to reduce p53 protein stability in HNSCC cells independently of HPV. Depletion of either PTTG or PBF significantly repressed cellular migration and invasion and impaired colony formation in HNSCC cells, implicating both proto-oncogenes in basic mechanisms of tumorigenesis. Patients with HNSCC with high tumoral PBF and PTTG had the poorest overall survival, which reflects a marked impairment of p53-dependent signaling.Significance: These findings reveal a complex and novel interrelationship between the expression and function of PTTG, PBF, and p53 in human HNSCC that significantly influences patient outcome. Cancer Res; 78(20); 5863-76. ©2018 AACR.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Proteínas de Membrana/metabolismo , Securina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adulto , Idoso , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Reparo do DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Estimativa de Kaplan-Meier , Lentivirus/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Infecções por Papillomavirus/complicações , Proto-Oncogene Mas , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Análise Serial de Tecidos , Resultado do Tratamento
3.
J Clin Endocrinol Metab ; 101(12): 4551-4563, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27603901

RESUMO

CONTEXT: Metastatic disease is responsible for the majority of endocrine cancer deaths. New therapeutic targets are urgently needed to improve patient survival rates. OBJECTIVE: The proto-oncogene PTTG1-binding factor (PBF/PTTG1IP) is overexpressed in multiple endocrine cancers and circumstantially associated with tumor aggressiveness. This study aimed to understand the role of PBF in tumor cell invasion and identify possible routes to inhibit its action. Design, Setting, Patients, and Interventions: Thyroid, breast, and colorectal cells were transfected with PBF and cultured for in vitro analysis. PBF and cortactin (CTTN) expression was determined in differentiated thyroid cancer and The Cancer Genome Atlas RNA-seq data. PRIMARY OUTCOME MEASURE: Pro-invasive effects of PBF were evaluated by 2D Boyden chamber, 3D organotypic, and proximity ligation assays. RESULTS: Our study identified that PBF and CTTN physically interact and co-localize, and that this occurs at the cell periphery, particularly at the leading edge of migrating cancer cells. Critically, PBF induces potent cellular invasion and migration in thyroid and breast cancer cells, which is entirely abrogated in the absence of CTTN. Importantly, we found that CTTN is over-expressed in differentiated thyroid cancer, particularly in patients with regional lymph node metastasis, which significantly correlates with elevated PBF expression. Mutation of PBF (Y174A) or pharmacological intervention modulates the PBF: CTTN interaction and attenuates the invasive properties of cancer cells. CONCLUSION: Our results demonstrate a unique role for PBF in regulating CTTN function to promote endocrine cell invasion and migration, as well as identify a new targetable interaction to block tumor cell movement.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias Colorretais/metabolismo , Cortactina/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Invasividade Neoplásica , Linhagem Celular Tumoral , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proto-Oncogene Mas , Neoplasias da Glândula Tireoide/metabolismo
4.
J Endocrinol ; 227(1): R1-R12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26285906

RESUMO

Breast cancer is the second most common cancer worldwide and the leading cause of cancer death in women, with incidence rates that continue to rise. The heterogeneity of the disease makes breast cancer exceptionally difficult to treat, particularly for those patients with triple-negative disease. To address the therapeutic complexity of these tumours, new strategies for diagnosis and treatment are urgently required. The ability of lactating and malignant breast cells to uptake and transport iodide has led to the hypothesis that radioiodide therapy could be a potentially viable treatment for many breast cancer patients. Understanding how iodide is transported, and the factors regulating the expression and function of the proteins responsible for iodide transport, is critical for translating this hypothesis into reality. This review covers the three known iodide transporters - the sodium iodide symporter, pendrin and the sodium-coupled monocarboxylate transporter - and their role in iodide transport in breast cells, along with efforts to manipulate them to increase the potential for radioiodide therapy as a treatment for breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Mama/metabolismo , Iodetos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Animais , Transporte Biológico , Feminino , Humanos , Lactação , Proteínas de Membrana Transportadoras/química , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Transportadores de Sulfato , Simportadores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...